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Abstract

Background

Introduction

Sample Size Requirements For

Feedforward Neural Networks

Neural networks have been used to tackle what might be termed ‘empirical
classification’ (or ‘empirical regression’) problems. Given independent samples
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We address the question of how many training samples are required to
ensure that the performance of a neural network of given complexity on
its training data matches that obtained when fresh data is applied to the
network. This desirable property may be termed “reliable generalization.”
Well-known results of Vapnik give conditions on the number of training
samples sufficient for reliable generalization, but these are higher by orders
of magnitude than practice indicates; other results in the mathematical
literature involve unknown constants and are useless for our purposes.
This work seeks to narrow the gap between theory and practice by

transforming the problem into one of determining the distribution of the
supremum of a Gaussian random field in the space of weight vectors,
which in turn is attacked by application of a technique called the Pois-
son clumping heuristic. The idea is that mismatches between training set
error and true error occur not for an isolated network but for a group
of similar networks. The size of this group of equivalent networks is ob-
tained, and means of computing the size based on the training data are
considered. It is shown that in some cases the Poisson clumping technique
yields estimates of sample size having the same functional form as earlier
ones, but since the new estimates incorporate specific characteristics of
the network architecture and data distribution it is felt that more realis-
tic estimates will result. A brief simulation study shows the usefulness of
the new sample size estimates.
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of data ( ) we wish minimize the error ( ) = ( ( )) ; that is, to
estimate ( ) = [ = ]. The approach taken is to choose a constraint class
of networks = ( ) and within that class, by an often complex procedure,
choose a candidate network . In determining how well this network models ,
It is useful to separate the modeling error into two parts. The first is includes
approximation error or bias—choosing large enough [5] so that , say,
models well—and the second piece is estimation error or variance—how well
the chosen performs relative to :

( ) ( ) = [ ( ) ( )] + [ ( ) ( )]

= ( ) + [ ( ) ( )]

A key question in such empirical regression problems is to choose an ap-
propriate tradeoff [15, 4], and here we examine the second, or estimation error
component. One may approximate the estimation error for a particular network
by using independent test data, if it is available, or cross-validation, if one is
content with its properties. Our work pursues another line, drawing its fun-
damental outlook from Vapnik [15] and from certain PAC learning results [7]
in that we find a bound on estimation error which is uniform across networks.
Such a bound provides at once an estimate of the estimation error of the chosen
. Furthermore, if we have confidence that the returned is nearly optimal in

the sense of emprical error (see below) within , the uniform bound allows us
to assert that of has true performance much better than that of
, a conclusion not available otherwise. The primary new feature in this work

is that we preserve dependence on the statistics of the data, and its interaction
with the architecture . In this way more realistic estimates of the sample size
needed to control estimation error are obtained.

We investigate the tradeoffs among , , and
of feedforward neural networks so as to allow a reasoned

choice of network architecture in the face of limited training data. Nets are
functions ( ; ), parameterized by their weight vector , which
take as input points . For classifiers, network output is restricted to
0 1 while for forecasting it may be any real number. The architecture of all
nets under consideration is , whose complexity may be gauged by its Vapnik-
Chervonenkis (VC) dimension , the size of the largest set of inputs the archi-
tecture can classify in any desired way (‘shatter’). Nets are chosen on the
basis of a training set = ( ) . These samples are i.i.d. according to
an probability law . Performance of a network is measured by the
mean-squared error

( ) = ( ( ; ) ) (1)

= ( ( ; ) = ) (for classifiers) (2)
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and a good (perhaps not unique) net in the architecture is

= arg min ( )

To select a net using the training set we employ the empirical error

( ) =
1

( ( ; ) ) (3)

sustained by ( ; ) on the training set . A good choice for a classifier is then

= arg min ( )

In these terms, the issue raised in the first sentence of the section can be restated
as, “How large must be in order to ensure ( ) ( ) with high
probability?”
For purposes of analysis we can avoid dealing directly with the stochastically

chosen network by noting

0 ( ) ( ) ( ) ( ) + ( ) ( )

2 sup ( ) ( )

A bound on the last quantity is also useful in its own right, as discussed above.

Most work has been done in the context of classification so we adopt that setting
in this section. The best-known result is due to Vapnik [16, 15], introduced to
a wider audience in [6, 8]:

( sup ( ) ( ) ) 6
2

(4)

This remarkable bound not only involves no unknown constant factors, but
holds independent of the data distribution . Analysis shows that sample sizes
of about

=
9 2

log(
8
) (5)

are sufficient to force the bound below unity, after which it drops exponen-
tially to zero. If for purposes of illustration we take = 1, = 50, we find
= 202 000, which disagrees by orders of magnitude with the experience of

practitioners who train such low-complexity networks (about 50 connections).
More recently, Talagrand [13] has obtained the bound

( sup ( ) ( ) ) (6)
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where , which gives the sufficient condition

=
max((1 2) log )

However, the values of and are inaccessible, and the result in this form
is of no practical use. It does, however, illustrate that the general order of
dependence is , without the extra logarithmic factor.
Related formulations have been examined. Vapnik [15] obtains bounds on

( sup
( ) ( )

( )
) (7)

(note ( ) ( ( )) when ( ) 0) and Anthony and Biggs [3]
work with the equivalent of

( sup ( ) ( ) 1 ( ( )) ) (8)

Both provide finer resolution near ( ) = 0. Haussler [9], although not con-
cerned primarily with obtaining tight bounds, considers another type of relative
distance in the regression setting. The formulation (8), for example, yields the
sufficient condition

=
5 8

log
12

(9)

for nets, if any, having ( ) = 0. If one is guaranteed to do reasonably well
on the training set, a smaller order of dependence results.
These are sufficient conditions on to force (sup ( ) ( ) )

low. In [6] Baum and Haussler find the condition which differs
by an important factor of 1 from the general sufficient condition.

By examining in detail the case of a perceptron classifier under multivariate
normal input we have derived another necessary condition, in that any VC-
type bound must include this as a special case. Suppose the observed data

has equal prior probability of being ( ) or ( ), and that
2 correctly classified samples are gathered from each prior. The classifier
( ; ) minimizing true error probability simply compares ( ) to a
threshold. The empirically chosen classifier is formed by substituting the
sample means under each hypothesis, ¯ and ¯ , into ; this is

. The error ( ) is easily written down, and after approximating
( ), we enforce the condition

( ) ( ) 2 (with high prob.)

which must hold for all values of and . The key to forcing a sample size
of order is to let shrink with . Analysis reveals that meeting the
above condition requires

280
(10)
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There are some technical details, of no interest here, in this passage to the limiting normal
process; see chapter 7 of [11].

lower than the VC sufficient condition by a factor of order just log(1 ), and
of the same order as the Talagrand condition. This demonstrates that the
behavior need not arise due to a strange “worst-case” input distribution or
network architecture. Rather, such a sample size occurs simply by letting the
data distributions under each pattern class approach one another as increases.

We now adopt a different approach to the problem. For the moderately large
values of we anticipate, the central limit theorem informs us that

[ ( ) ( )]

has nearly the distribution of a zero-mean Gaussian random variable. It is
therefore reasonable to suppose that

( sup [ ( ) ( )] ) ( sup ( ) ) 2 ( sup ( ) )

where ( ) is a Gaussian process with mean zero and covariance

( ) = ( ) ( ) = ( ( ; )) ( ( ; ))

Further, by symmetry of the zero-mean Gaussian process,

( sup ( ) ) ( sup ( ) ) 2 ( sup ( ) ) (11)

The factor of two makes no significant contribution to the sample size estimate
because of the exponential nature of the probability bounds to be developed, so
the absolute value may be ignored. The problem about extrema of the original
empirical process is equivalent to one about extrema of a corresponding Gaussian
process.
The Poisson clumping heuristic (PCH), introduced in a remarkable book [2]

by D. Aldous, provides a tool of wide applicability for estimating such ex-
ceedance probabilities. Consider the excursions above level (= 1) of a
sample path of a stochastic process ( ). As in figure 1a, the set : ( )
can be visualized as a group of “clumps” scattered in weight space . The PCH
says that, provided has no long-range dependence and the level is large, the
centers of the clumps fall according to the points of a Poisson process on , and
the clump shapes themselves are independent. Figure 1b illustrates this clump
process. The vertical arrows illustrate two clump centers (points of the Poisson
process); the clumps themselves are the bars centered about the arrows.
In fact, with ( ) = ( ( ) ), ( ) the size of a clump located at ,

and ( ) the rate of occurrence of clump centers, the fundamental equation is

( ) ( ) ( ) (12)
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Figure 1: The Poisson clumping heuristic

Since clump centers form a Poisson process, the number of clumps in is a
Poisson random variable with parameter ( ) . The probability of a
clump, which we wish to make small since it corresponds to existence of a bad
estimate of ( ) by ( ), is

( 0) = 1 exp ( ) ( )

where the last approximation holds because our goal is to operate in a regime
where this probability is near zero. Letting Φ̄( ) = ( (0 1) ) and ( ) =
( ), we have ( ) = Φ̄( ( )). The fundamental equation becomes

( sup ( ) )
Φ̄( ( ))

( )
(13)

It remains only to find the mean clump size ( ) in terms of the network
architecture and the statistics of ( ).

Assume ( ) has two mean-square derivatives in . (If the network activation
functions have two derivatives in , for example, ( ) will have two almost sure
derivatives.) We can then write a quadratic approximation to in the vicinity
of a point :

( ) + ( ) +
1

2
( ) ( ) (14)

where the gradient = ( ) and Hessian matrix = ( ) are both
evaluated at . One pictures a downward-turning parabola peaking near
which attains height at least ; the clump size is the volume of the ellipsoid in
formed by the intersection of the parabola with the level . Provided ,

that is that there is a clump at , simple computations reveal

(2( ) )
(15)
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The subtle distinction between ( ) and [ ( ) ] is that the condition
( ) is not precisely equivalent to occurrence of a at , which implic-

itly conditions the mean clump size; in fact, the latter implies the former. However, it is
apparent that the two events are closely related so that the approximation is reasonable. We
shall have more to say on the tightness of this approximation in section 6.

where is the volume of the unit ball in and is the determinant.
The mean clump size is approximately the expectation of conditioned on
( ) .
The same argument used to show that ( ) is approximately normal shows

that and are approximately normal too. In fact,

[ ( ) = ] =
( )

Λ( )

Λ( ) = ( ) = ( )

so that, since (and hence ) is large, the second term in the numerator of (15)
may be neglected. The expectation is then easily computed, resulting in

( )

( ) (2 )
Λ( )

( )

( )

Substituting into (13) yields

( sup ( ) ) (2 )
Λ( )

( ) ( )
Φ̄( ( )) (16)

(2 )
Λ( )

( ) ( )

where use of the asymptotic expansion Φ̄( ) ( 2 ) exp( 2) is justified
since ( ) ( ) is necessary to have each individual probability ( ( )
) low—let alone the supremum. To proceed farther, we need some information
about the variance ( ) of ( ( ; )) . In general this must come from the
problem at hand, but suppose for example the process has a unique variance
maximum ¯ at ¯. Then, since the level is large, we can use Laplace’s method
to approximate the -dimensional integral.
Laplace’s method is a way to find asymptotic expansions for integrals of the

form

( ) exp( ( ) 2)

when ( ) has two continuous derivatives and a unique positive minimum at
in the interior of , and ( ) is continuous at . Suppose ( ) 1 so
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Let the network activation functions be twice continuously differ-
entiable. Let the variance have a unique maximum at in the interior of
and the level . Then the PCH estimate of exceedance probability is given
by

where . Furthermore, is positive-definite at
; it is the Hessian of . The leading constant thus strictly exceeds

unity.

that the exponential factor is decreasing much faster than the slowly varying .
Expanding about , substituting into the exponential, and ignoring terms
of more than second order yields

( ) exp( ( ) 2) exp( ( ) [ ( ) ]( ) 2)

( ) exp( ( ) 2) exp( ( ) [ ( ) ]( ) 2)

where = ( ) , the Hessian of . In the latter equation we have used
that is changing slowly relative to the exponential. The integral is expanded to
all of —it is negligible away from —and is easily performed. The Laplace
asymptotic expansion is

( ) exp( ( ) 2) (2 ) ( ) ( ) exp( ( ) 2)

Applying this method to the integral (16) results in

¯ ¯
¯

( sup ( ) )
Λ( ¯)

Λ( ¯) Γ( ¯)

¯

2
(17)

Λ( ¯)

Λ( ¯) Γ( ¯)
Φ̄( ¯) (18)

Γ( ¯) = ( ) Λ Γ
¯ 1 2 ( )

The above probability is just ( ( ¯) ) multiplied by a factor to account
for the other random variables in the supremum. Letting = in the above
reveals that

=
¯ log

(19)

= Λ( ¯) Λ( ¯) Γ( ¯) = Λ( ¯) Γ( ¯) (20)

samples will force (sup ( ) ( ) ) low. With playing the role of
VC dimension , this is similar to Vapnik’s bound although we have retained
dependence on the underlying and . Similar results (but in which the con-
stant is explicitly determined) are available for different versions of this problem,
and certain other related problems [14].
We note that the above probability has the property of being determined by

behavior near the maximum-variance point, which for example in classification is
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where ( ) = 1 2. (This ‘concentration’ property is in fact quite common [12]).
Such nets are not very interesting as classifiers, and certainly it is not desirable
for them to determine the entire probability. This problem can be avoided by
focusing instead on

sup
( ) ( )

( )
sup

( )

( )
(21)

which has the added benefit of allowing a finer resolution to be used where ( )
is near zero. In classification for example, if is such that with high probability

sup
( ) ( )

( )
= sup

( ) ( )

( )(1 ( ))
(22)

then ( ) = 0 implies ( ) (1 + ) . We see that around
( ) = 0 the condition (22) is much more powerful than the corresponding

unnormalized one. Sample size estimates using this formulation give results
having a functional form similar to (9).

In this section we explore some approximations to clump size that also figure into
accurate lower bounds for the exceedance probability. These approximations
have the advantage of being easier to express for arbitrary processes than the
clump size. The starting point is the total exceedance volume

( ( ) ) = vol( : ( ) ) (23)

where ( ) = 1 iff 0. At levels of interest to us, = 0 with high
probability, motivating the introduction of the

[ ( ) ] (24)

As the name suggests, the mean bundle size is different from the clump size
partly because the former includes all exceedances of the level , not just the
region corresponding to a given clump center. The bound is an overestimate
when the number of clumps exceeds one, but recall that we are in a regime
where (equivalently ) is large enough so that

( 1) ( = 1) ( ) 1

Thus error in (23) due to this source is negligible.
The principal source of difference between ( ) and [ ( ) ] has

to do with biased sampling. The event conditioning bundle size is an exceedance
at , or equivalently occurrence of a clump capturing . By virtue of its having
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Let be measurable sets for each , and let be a
measure on . Assume that

is a well-defined random variable. If the regularity conditions a.s.
and are met, then

Proof.

been large enough to overlap a point, such a clump is on average larger than a
clump centered at , and in fact one can show that

[ ( ) ]

( )

( )

( ( ))
1 (25)

In the examples we have studied, the amount of overestimation is not enough
to significantly affect the sample size estimates.
The usefulness of the bundle size is due to the following results, which are

an extension (see also [1]) of the union bound. For clarity we make explicit
the dependence on the experimental outcome Ω (further distinguished from

by the underbar).

Ω

= ( ) := ( : ) (26)

( )
( ) 0

= ( ) [ ] ( )

In order for ( ) to make sense, for each fixed the -measure must be defined.
Then, the resulting function Ω must be a random variable.

The regularity conditions on ( ) allow us to define ( ) = 1 ( ) for
and zero otherwise. Rewriting the union and iterating the expectation

give

1 a s = 1 ( )

= 1 ( )

= [ 1 1 ] ( )

= 1 [ 1 ] ( )

= 1 [ ] ( )

= ( ) [ ] ( )

since ( ) = ( ) if .
As a simple corollary we have
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Theorem 2

Lemma 3 (Clump size estimate)

Remark 1.

If is continuous and a.s.,

Proof.

For the mean bundle size is

Z w D <

P Z w > b
b/σ

E D Z w >b
dw

b/σ

E D Z w >b
dw

θ S ω Z w > b
D ω D Z w R

D
Z b, Z w > b

f > Ef Ef

E D Z w > b P Z w b Z w b dw .

Z w Z w σ σ w σ σ w
ρ ρ w,w R w,w / σσ

ζ ζ w,w σ/σ
ρσ /σ

ρ

ρ

ρ
.

b σ

ED w b/σ ζ dw .

P Z w > b
b/σ

b/σ ζ dw
dw .

b w
σ /σ

w ζ
b

σ/b p d
w ζ w,w M

ζ w
ρ w

( )

( sup ( ) ) =
Φ̄( )

[ ( ) ]

Φ̄( )

[ ( ) ]

Take as Lebesgue measure and = Ω : ( ) in the
proposition. Then ( ) = . Continuity of ( ) as a function
ensures that is a well-defined random variable. In fact, continuity tells us
that the preimage ( ) is open a.s., so if ( ) the preimage
is also nonempty and its Lebesgue measure is positive. The second assertion is
a consequence of the harmonic mean inequality: 0 ( ) .
The bundle size is easier to compute than the clump size because

[ ( ) ] = ( ( ) ( ) ) (27)

Since ( ) and ( ) are jointly normal, abbreviate = ( ), = ( ),
= ( ) = ( ) ( ), and let

= ( ) = ( )
1

1
(28)

=
1

1 +
(constant variance case) (29)

Evaluating the conditional probability above presents no problem, and we obtain

( ) Φ̄ (( ) ) (30)

This integral will be used in (13) to find

(sup ( ) )
Φ̄( )

Φ̄ (( ) )
(31)

Since is large, the main contribution to the outer integral occurs for near
a variance maximum, i.e. for 1. If the variance is constant then all

contribute. In either case is nonnegative. By comparison with the
results in lemma 1, we expect the estimate (30) to be, as a function of , of
the form (const ) for, say, = . In particular, we do not anticipate the
exponentially small bundle sizes resulting if ( ) ( ) 0. To achieve
such polynomial sizes, must come close to zero over some range of , which
evidently can happen only when 1, that is, for in a neighborhood of
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Empirical Estimates of Bundle Size

w

w Z w Z w

n /v n

Z EC w

P

E D Z w > b
γ < w

S w w ζ w,w γ

V w S w

E D Z w > b b/σ ζ dw V w b/σ γ .

R w,w
ζ

P Z w b
b/σ

V w b/σ γ
dw

. The behavior of the covariance locally in such neighborhoods is the key to
finding the bundle size.

There is a simple interpretation of the bundle size; it represents
the volume of for which ( ) is highly correlated with ( ). The
exceedance probability is a sum of the point exceedance probabilities (the nu-
merator of (31)), each weighted according to how many other points are corre-
lated with it. A large bundle size indicates strong correlation of the weight in
question to neighboring weights, and its contribution to the exceedance prob-
ability is accordingly decreased. Smaller bundle sizes indicate a more jagged
process and give a relatively larger contribution to the exceedance probability.
In effect, the space is partitioned into regions that tend to “have exceedances
together,” with a large bundle size indicating a large region. The overall prob-
ability can be viewed as a sum over all these regions of the corresponding point
exceedance probability. This has a similarity to the Vapnik argument which
lumps networks together according to their ! possible actions on items in
the training set. In this sense the mean bundle size is a fundamental quantity
expressing the ability of an architecture to generalize.

The bundle size estimate of lemma 3 is useful in its own right if one has infor-
mation about the covariance of . Other known techniques of finding ( )
exploit special features of the process at hand (e.g. smoothness or similarity to
other well-studied processes); the above expression is valid for any covariance
structure. In this section we show how one may the clump size us-
ing the training set, and thus obtain probability approximations in the absence
of analytical information about the unknown and the potentially complex
network architecture .
Here is a practical way to approximate the integral giving [ ( ) ].

For 1 define a set of significant

( ) = : ( ) (32)

( ) = vol( ( )) (33)

and note that from the monotonicity of Φ̄

[ ( ) ] Φ̄(( ) ) ( ) Φ̄(( ) )

This apparently crude lower bound for Φ̄ is accurate enough near the origin
to give satisfactory results in the cases we have studied. For example, we can
characterize the covariance ( ) of the smooth process of lemma 1 and thus
find its function. The bound above is then easily calculated and differs by
only small constant factors from the clump size in the lemma.
With this bound we have

(sup ( ) )
Φ̄( )

( ) Φ̄(( ) )

12
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Figure 2: Estimating for binary classification. In the upper plot, the curves
nearly coincide. The ratio in the lower plot is shown in percent.

( ) exp( (1 ) 2 ) (34)

because as long as is not too small, both arguments of Φ̄ will be large, justifying
use of the asymptotic expansion Φ̄( ) ( 2 ) exp( 2). We now need to
find ( ), which we term the , as it represents those weight
vectors whose errors ( ) are highly correlated with ( ).
One simple way to estimate the correlation volume is as follows. Select a

weight and using the training set compute

( ( ; )) ( ( ; )) and

( ( ; )) ( ( ; ))

It is then easy to estimate , , and , and finally ( ), which is compared
to the chosen to decide if ( ) or not.
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It is possible to reliably estimate in this way, even when 1. Figure 2
illustrates this for the problem of binary classification. The error ( ( ; )) is

a Bernoulli random variable, and ˆ is formed from i.i.d. pairs (for and ) of
such variables having a given variance and correlation. Choosing = = 1 2,
the correlation is then varied from 0 8 to nearly unity, resulting in dropping
from about 1 3 to quite small values. (The estimator ˆ is forced to find the
variances even though they are the same in this example.) The upper panel

shows and the sample mean of 100 independent ˆ estimates, each of which is
computed on the basis of = 1000 pieces of data. This plot shows the scale of
and demonstrates that ˆ is essentially unbiased, at least for moderately large.
The lower panel shows the ratio of standard deviation of ˆ to , expressed as
a percentage, for = 1000 (upper curve) and = 10 000 (lower curve). Only
for quite low values of does the variance become significant. However, this
variability at very low does not influence estimates of ( ) as long as the
threshold is moderate, which in this simulation would mean greater than 1 20
or so.
The difficulty is that for large the correlation volume is much smaller than

any approximately-enclosing set. Ordinary uniform Monte Carlo sampling and
even importance sampling methods fail to estimate the volume of such high-
dimensional convex bodies because so few hits can be scored in probing the
space [10]. It is necessary to concentrate the search.
The simplest technique is to let = except in one coordinate and sample

along each coordinate axis. The correlation volume is then approximated as the
product of these one-dimensional measurements.

We are now in a position to perform simulation studies to test our ability to
estimate the correlation volume and hence the exceedance probability. For sim-
plicity, normalize the process ( ) by its standard deviation ( ) as indicated
earlier. The variance of the scaled process is unity and (34) becomes

(sup
( )

( )
)

Φ̄( )

Φ̄( )
( ) (35)

which we will estimate by a Monte Carlo integral, using the above method for
finding the integrand ( ). The only difficulty is the choice of , which in turn
depends on . Recomputing the integral for many different or values must
be avoided.
This can be done if we make the reasonable assumption that

( ) = ( )

with = 2 (smooth process) or 1 (rough process). This amounts to supposing
the correlation ( ) falls off quadratically or linearly for in a neighbor-
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For example, a nondifferentiable process must have a covariance ( ) that does not
have a derivative in at = . The most familiar example of such a process is the Brownian
bridge on [0 1], for which ( ) = is ‘tent-shaped’ at = .

hood of . The coefficients may change as varies but the basic form of the
correlation does not.
Thus, once the integral is computed for a reference , it can be scaled to a

desired 1 via

sup
( )

( )

Φ̄( )

Φ̄( )
( ) (36)

Upon differentiating we find the optimal satisfies = 2 , and

sup
( )

( )
Φ̄( )

( )

(2 ) Φ̄( 2 )
(37)

= Φ̄( ) exp( ) (38)

where the final line defines .
As a brief demonstration of the potential accuracy of the method outlined

above, consider the following example of a perceptron. Nets are ( ; ) =
1 ( ) for = , and data is uniform on [ 1 2 1 2] . Suppose
= ( ; ) and = [1 1]. This is a version of the in
. Nets are discontinuous so ( ) is ‘rough’ with = 1.
In figure 3 is the empirically determined versus for the threshold func-

tion. At each twenty independent estimates of are averaged. Each estimate
is found via a Monte Carlo integral, as described above, with correlation volumes
determined from a training set of size 100 .
Over the range, say, 7 50, we see 1 and

sup
( )

( )
( ) Φ̄( )

(1 ) log sup
( )

( )
1 + log( ) (1 2)( )

This falls below zero at = 5 4, implying that sample sizes above the critical
value

= 5 4

=
5 4

(39)

are enough to ensure that with high probability,

sup
( ) ( )

( )(1 ( ))
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Figure 3: Empirical estimate of the leading constant for a perceptron architec-
ture. Error bars span one sample standard deviation in each direction from the
sample mean.

As in the remarks below (22), if there is a net having ( ) = 0, we see that
sample sizes above

=
5 4

(40)

will guarantee ( ) with high probability, which compares favorably with (9).
The condition above also tells us about nets having small but nonzero error.

In an effort to provide guidelines for intelligent choice of a network architecture
based on the amount of data available to select a network, we have related
ability to generalize correctly ( ) to network complexity ( or ) and training
set size ( ).
To do this we transform the neural network problem to one of finding the

distribution of the supremum of a derived Gaussian random field, which is de-
fined over the weight space of the network architecture. The latter problem is
amenable to solution via the Poisson clumping heuristic. In terms of the PCH
the question becomes one of estimating the mean clump size, that is, the typical
volume of an excursion above a given level by the random field. In the “smooth”
case we directly find the clump volume and obtain estimates of sample size that
are in general of order . The leading constants depend on simple properties
of the architecture and the data—which has the advantage of being tailored
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to the given problem but the potential disadvantage of our having to compute
them.
We also obtain a useful estimate for the clump size of a general process.

When this estimate is put back into the expression for exceedance probability,
a simple interpretation of the clump size in terms of the number of “degrees of
freedom” of the problem results. Related to this clump size is the correlation
volume ( ). Paraphrasing (34) in the constant-variance case,

( sup
( ) ( )

( )
)

vol( )

( )

where the expectation is taken with respect to a uniform distribution over the
weight space. The probability of reliable generalization is roughly given by
an exponentially decreasing factor (the worst-case exceedance probability for
a single point) times a number representing degrees of freedom. The latter is
the mean number of networks needed to cover the space. The parallel with the
Vapnik approach, in which a worst-case exceedance probability is multiplied by
a growth function bounding the number of classes of networks in that can act
differently on pieces of data, is striking. In this fashion the correlation volume
is an analog of the VC dimension, but one that depends on the interaction of
the data and the architecture.
Lastly, we have proposed practical methods of estimating the correlation

volume empirically from the training data. Initial simulation studies based on a
perceptron with input uniform on a region in show that these approximations
can indeed yield informative estimates of sample complexity.
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